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Abstract
Thermophoresis is particle motion induced by thermal gradients. Akin to other driven transport
processes, such as the Soret effect in simple fluid mixtures, or electrophoresis and
diffusiophoresis in colloidal suspensions, it is, both experimentally and theoretically, a
challenging subject. Rather than being a comprehensive recollection, this review aims to be a
critical re-examination of the experimental and theoretical tools used to investigate
thermophoresis, and of some recent relevant results that may unravel novel aspects of colloid
solvation forces. The perspectives of thermophoresis as a tool for particle manipulation in
microfluidics are also emphasized.

Contents

1. Introduction 1

1.1. Some basic definitions 2
2. Related effects 2

2.1. Thermal diffusion in liquid mixtures and
solutions (Ludwig–Soret effect) 2

2.2. Particle thermophoresis in gases 3

2.3. ‘Phoretic’ phenomena in suspensions 4
3. Experimental methods 5

3.1. Optical probing: beam deflection methods 5

3.2. All-optical methods 6
4. Experimental results 8

4.1. A survey of investigated systems 8

4.2. Some general experimental features 10
5. Theory 12

5.1. Brownian motion and the Soret coefficient 12

5.2. Linear response theory and hydrodynamics 13

5.3. Interfacial effects and the problem of boundary
conditions 14

5.4. Failure of the energy route 16

5.5. Remarks on electrostatic effects 16
6. Conclusions and perspectives 17
References 17

1. Introduction

The investigation of the equilibrium properties of colloidal
dispersions has yielded valuable and often unforeseen insights
on statistical mechanics and condensed matter physics.
Since the effective interaction potential between colloidal
particles can be tuned by varying the solvent properties,
colloids can indeed be prepared as model systems, displaying
the same structural properties of an assemblage of ‘big
atoms’ interacting via simple, well defined forces [1]. In
other words, the collective (‘colligative’) properties of a
colloidal suspension are largely insensitive to the specific
physicochemical nature of the constituting particles. Further
information can be gained by applying external body forces
such as gravity, which render the suspension spatially
inhomogeneous and allow us to extract fine details of colloidal
phase behavior [2]. More generally, studies of disperse systems
driven by external fields or under non-equilibrium conditions
may unravel novel and interesting aspects of condensed matter
behavior.

Yet, even simple non-equilibrium phenomena may conceal
delicate problems, and pose serious theoretical challenges,
dwelling in the very roots of statistical physics. Colloidal
thermophoresis, the effect we shall deal with in this review, is
probably a kind of ‘archetypal’ non-equilibrium problem. The
question is the following: how is particle motion influenced
by the presence of a uniform thermal gradient ∇T ? The
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experimental evidence is that, on top of random Brownian
diffusion, the particles perform a steady drift towards the hot
or the cold side. This is quite similar to what happens when
an external driving force, such as gravity or an electric field,
is applied to the suspension. However, no real external field is
actually present. Since the kinetic energy associated with the
drift motion is generally a tiny fraction of kBT , one may try
and adopt a strategy akin to linear response analysis of thermal
transport coefficients to derive an ‘effective’ field yielding the
same effects as ∇T on particle motion. Yet, this is far from
being trivial: rather, as we shall see, theoretical routes are
often strewn by booby traps. Provided that fallacious tracks are
carefully avoided, the real challenge is however explaining the
most striking experimental feature of thermophoresis, namely
its peculiar sensitivity to the investigated system. Indeed, the
amplitude of thermophoretic effect is not fixed by particle
general bulk or surface physical properties, such as its size,
material density, thermal conductivity, or total surface charge:
rather, it seems to be subtly related to the detailed microscopic
nature of the particle/solvent interface. Because of this,
thermophoresis is much harder to understand than other field-
driven transport effects such as electrophoresis. On the other
hand, such a strong system specificity makes thermophoretic
studies particularly promising for obtaining novel information
on particle/solvent interactions.

Rather than an extensive and ‘neutral’ compilation of
recent results, this review aims to be a critical analysis of
the experimental and theoretical tools used to investigate
thermophoresis in liquids, and of some selected findings that
we regard as particularly relevant. Fully aware that this
selection may be partly biased, we nonetheless hope that
our choice may spur further experimental and theoretical
investigations of this intriguing effect.

1.1. Some basic definitions

As we mentioned, thermophoresis is an additional particle
transport mechanism brought in, on top of Brownian diffusion,
by the presence of a thermal gradient. We shall then write the
total mass flux as

J = −D∇c − cDT∇T, (1)

where D is the usual Brownian diffusion coefficient. For
historical reasons, related to the study of thermal diffusion in
simple liquid mixtures, DT is generally called the ‘thermal
diffusion coefficient’3. Dimensionally, however, DT is
not a diffusion coefficient and, noticing that the steady-
state thermophoretic velocity acquired by the particle is
simply given by vT = −DT∇T , should rather be dubbed
thermophoretic mobility, in analogy with other transport effects
such as electrophoresis. Observing that the ‘thermodynamic
force’ associated with a thermal gradient is actually ∇T/T =
3 Equation (1) assumes that, as is often the case, the particle concentration
c is small. For very concentrated suspensions, it is more appropriate using
dimensionless concentration units, such as weight fractions w, and redefine
the mass flux as Jw = −D∇w − w(1 − w)DT∇T , which is symmetrical in
particle and solvent composition.

∇ ln T , a more meaningful definition can be given by writing

J ′ = −D
∇c

c
− D̃T

∇T

T
, (2)

where J ′ is the mass flux per unit concentration and D̃T =
T DT is a true diffusion coefficient, which can profitably be
compared with D.

Assuming a uniform thermal gradient directed along
z, vanishing of the net mass flow leads to a steady-state
concentration profile4

dc

dz
= −cST

dT

dz
, (3)

where ST = DT/D = −1/c(dc/dT ) is called, by analogy
to thermal diffusion in liquid mixtures (see below), the
Soret coefficient. With this definition, ST > 0 when the
particles move to the cold, displaying what we shall call a
‘thermophobic’ behavior. The coefficient ST introduces a
characteristic length scale

�T = (ST∇T )−1 = D

vT
, (4)

that can be envisaged as that length scale over which
thermophoretic drift eventually becomes dominant with
respect to Brownian diffusion. A length scale with the
same physical meaning can obviously be defined for colloidal
motion driven by a true external field. For instance, in colloid
settling under gravity, this role is played by the sedimentation
length �g = D/vS, where vS is the Stokes sedimentation
velocity. However in this case �g is also simply related to the
applied field as �g = kBT/mg, where m is the particle buoyant
mass, while no similar identification is easily conceivable
for �T. Notice finally that, even when ∇T = const, the
concentration profile is exponential, c(z) = c0 exp(−z/�T),
only provided that ST does not appreciably depend on T and c.

2. Related effects

Before embarking on the analysis of colloid thermophoresis,
it is instructive to take a glance at closely related transport
effects induced by thermal gradients in liquid mixtures or
in dilute gases, which stand at the roots of the problem
we are considering, and concur in providing the conceptual
framework for particle thermophoresis in liquids. As we shall
see, the comprehension of the basic mechanisms underlying
thermophoresis in liquids may indeed benefit from what is
known about thermal diffusion in liquid mixtures and particle
thermophoresis in gases.

2.1. Thermal diffusion in liquid mixtures and solutions
(Ludwig–Soret effect)

Thermal diffusion, or the Ludwig–Soret effect, is the
‘molecular counterpart’ of particle thermophoresis, and

4 Of course, in the presence of gravity, care should be taken to avoid the onset
of convective effects, leading in general to a very different stationary state. We
shall extensively deal with spurious convection effects in what follows.
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consists in the partial segregation of the components in
fluid mixtures or simple solutions induced by a thermal
gradient [3]. Originally discovered by Ludwig [4] by
observing that concentrated salt solutions easily crystallize
around the cooled limb of an inverted U-tube, it was later
independently described by Soret [5], who quantified the effect
for many electrolyte solutions, and clearly framed into non-
equilibrium thermodynamics by de Groot [6]. Even though it
is a relatively small effect (the Soret coefficient of common
mixtures is only of the order of 10−3 K−1), thermal diffusion
has been extensively studied due to its dramatic impact on
convective mixing. Indeed, since any inverted concentration
gradient brought in by the Soret effect can relax only by
mass diffusion, which is far slower than heat diffusivity,
the convection threshold in mixtures is dramatically lowered
compared to simple fluids (when ST < 0, it is even possible
to induce convection by heating from above [7]). Therefore,
thermal diffusion plays a crucial role in many naturally
occurring convective processes, from component segregation
in solidifying metallic alloys [8] and volcanic lava [9] to
convection in the earth mantle [10]. As already evident from
the original observations by Ludwig, it also plays an important
role in crystal growth [11]. More recently, it has been shown
that thermal diffusion sets the scene for giant fluctuations in
non-isothermal mixtures [12].

No detailed microscopic model of the Soret effect has so
far been proposed. However, for gas mixtures, some general
indications stem from kinetic theory. Thermal diffusion was
indeed theoretically predicted by Chapman back in 1912 [13].
Chapman’s explicit formulas are too complicated to be quoted
here, so we shall recall only the main features of his results.
First of all, thermal diffusion exists only if the masses m1,2

or sizes σ1,2 of the two components are different, growing as
m1/m2 or σ1/σ2 up to a finite limiting value. In all cases,
the component with larger m or σ moves to the cold. What
is more striking, however, is that not only the amplitude, but
also the very existence of thermal diffusion depends on the
specific form of the interaction potential used for modeling
collisions. Indeed, DT is largest for hard spheres and decreases
for softer repulsive potentials, actually vanishing for Maxwell’s
model potential u(r) ∼ r−5. Such a strong dependence is
quite uncommon for kinetic transport coefficients. Quoting
Chapman, thermal diffusion is therefore ‘... one of the
few properties of a gas which depends essentially on the
particular characteristics of the molecules’, that is, ‘in its very
nature (i.e., not merely in absolute magnitude) on a particular
molecular model’.

Purely kinetic theories are notoriously inadequate to
describe liquids: nonetheless, some of the former features are
shared by liquid mixtures. At least for liquids interacting via
a Lennard-Jones potential, the sign of ST and the molecular
mass dependence of DT agree with what is predicted for
gases. For simple mixtures, the effects of attractive forces and
of structural organization mirror into a qualitative correlation
of thermal diffusion properties with the cohesive energy of
the system, quantified by the Hildebrandt parameter [14].
For more complicated interactions, however, the situation
is much more complicated: mixtures where hydrogen bond

contributions are dominant, such as water + ethanol, display
for instance a sign-reversal of ST as a function of concentration.

Since analytical models of the Soret effect in liquids are
far beyond the present capabilities of statistical mechanics,
resorting to numerical studies seems to be unavoidable. Yet,
simulation of non-equilibrium systems is far from being easy,
and only recently have sophisticated numerical approaches
such as non-equilibrium molecular dynamics (NEMD) been
consistently established. Most of the studies so far performed
have however concentrated on confirming basic experimental
evidence, such as the tendency of the heavier species to move
to the cold side (for a detailed review, see [14]). An interesting
approach has been followed by Artola and Rousseau [15], who
tried to extract a purely ‘chemical’ (interaction) contribution to
the Soret coefficient by simulating mixtures of two components
having the same mass and size, but different Lennard-Jones
self-and cross-interaction parameters εi j . Their results are
better discussed in terms of the dimensionless parametersψε =
ε11/ε22 and k12 = ε12/

√
ε11ε22. For ψε = 1, the Soret

coefficient of component 1 is a linear function of the molar
fraction x1, switching sign from ST > 0 to ST < 0 when x1 =
xs � 0.5. In other words, the less concentrated component
always goes to the cold side. The value of k12 only controls
the limiting values for x1 = 0, 1, and therefore the line slope.
Much more interesting is the effect of increasing ψε , which
results in a concentration-independent downward shift of ST,
and therefore a substantial decrease in xs. Besides showing
that, in liquid mixtures, thermal diffusion may exist even for
components with equal mass and size, this approach yields
therefore very interesting qualitative information concerning
the sign of ST and its relation to specific molecular interaction
parameters.

Although the theoretical understanding of the Soret effect
in liquid mixtures is in general rather poor, there is an
important exception. In liquid mixtures close to a critical point,
the Soret coefficient diverges as ST ∼ (T − Tc)

−ν , where
ν � 0.63 is the usual critical exponent for the correlation
length ξ . The divergence of ST, originally observed by Giglio
and Vendramini [16], has been explained by Mistura [17] by
showing that it is only due to the critical slowing-down of D,
while DT is a regular, ξ -independent quantity remaining finite
at T = Tc. This amounts to saying that DT is related only to
local, microscopic quantities, and is totally insensitive to the
size of the correlated regions coherently driven by the thermal
gradient.

2.2. Particle thermophoresis in gases

Thermally driven transport in aerosols has been known
since the seminal observation by Tyndall [18] who, by
visually observing the light scattered by hazes, noticed that
the suspended dust particles tend to avoid hot surfaces.
Although a deep connection to the Soret effect obviously
exists, the theoretical analysis of particle thermophoresis in
gases proceeded along a totally independent route (with the
noticeable exception of the work by Chapman [19]).

The basic mechanisms underlying thermophoresis in gases
are very different, depending on the ratio K n = λ/a between
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the mean free path λ and the particle size a (the Knudsen
number). When K n � 1 (very low density gases), the
problem is actually very similar to thermal diffusion in a
gas mixture where one of the two components (the particles)
has an exceedingly large size compared to the other. We
are more interested in the opposite limit, K n � 1 (gas
at moderate pressure), which is properly called the ‘quasi-
hydrodynamic regime’. The basic ideas allowing us to
understand thermophoresis in this regime stem from the last
paper by Maxwell [20], where stresses in rarefied gases arising
from inequalities of temperature are thoroughly investigated5.
The key result of this paper is that, in a homogeneous gas,
no longitudinal (pressure) or transverse stresses are associated
with temperature gradients. The situation is however very
different when a bounding solid surface is present. Let us
indeed assume that the gas is bounded by a planar surface S,
with a temperature gradient parallel to S, and consider those
molecules that lie within a mean free path λ from S (and
therefore suffer no molecular collision before hitting the wall).
Since the impacting molecules are not specularly reflected
(outgoing molecules have a partially random momentum
distribution, due to thermalization with S), each molecule
transfers a momentum 	p to the wall. A careful evaluation
of the total momentum exchange requires however taking into
account corrections to the equilibrium distribution f0(v) of
the molecular speed, which must be included to account for
dissipative processes. From the Boltzmann equation, one finds
at first order [22]

f (v) = [1 + Cvz(5/2 − mv2/2kBT )] f0(v), (5)

m is the molecular mass, C is a normalization constant, and
the thermal gradient is taken along z. If this is made, the
total rate of momentum transfer turns out to be larger for
those molecules coming from the hot side: therefore a net
longitudinal momentum transfer takes place, pulling S towards
the cold side.

Using Maxwell’s result, Epstein [23] was able to calculate
the steady-state thermophoretic velocity acquired by particle
with thermal conductivity κp, embedded in a gas having
thermal conductivity κg, viscosity η, and number density ρ:

vT = 3η

2ρT

(
κg

2κg + κp

)
∇T0. (6)

Since Epstein’s seminal contribution, extensive theoretical and
experimental work on thermophoresis in gases has been per-
formed (as general reviews, see, for instance [24–26]), which
even spurred the development of widely used thermophoretic
soot sampling methods [27]. Furthermore, the intimate con-
nection between thermophoresis and thermal diffusion in gas
mixtures has been thoroughly investigated [28]. For our
purposes, however, it is sufficient to stress some basic fea-
tures of the mechanism driving thermophoresis in the quasi-
hydrodynamic regime. (i) The gas exerts on the surface a
purely tangential stress. Therefore, within a surface layer with

5 Maxwell’s paper accounts both for the ‘radiometric forces’ discovered by
Crookes and for the ‘thermal transpiration’ effects observed by Reynolds. For
a beautiful historical recollection, see [21].

a thickness of the order of λ, the pressure tensor is anisotropic.
(ii) Because only tangential stresses are involved, even if it is
a surface effect, the total force on the particle FT scales only
with a, and not a2 (so that vT = FT/ f , where f is the fric-
tion coefficient, is size independent6). (iii) In hydrodynamic
terms, vT can eventually be seen as a slip velocity of the parti-
cle, with a slip length � ∼ λ. (iv) Particle bulk properties enter
the problem only through the thermal conductivity κp, that, to-
gether with κg, determines the local temperature field around
the particle via the heat equation.

2.3. ‘Phoretic’ phenomena in suspensions

Colloid thermophoresis is actually just a particular case of a
larger class of transport effects collectively dubbed ‘phoretic
motion’, whose specificity is to be essentially related to
particle/solvent interfacial properties. The peculiarity of
phoretic motion can be better appreciated by comparing them
to a bulk transport mechanism such as sedimentation. In
gravity settling, a particle is subjected to a force proportional
to its buoyant mass, a bulk property scaling as the particle
volume, which is balanced by the viscous drag scaling as the
particle radius a. As a consequence vS scales as a2. Consider
instead the case of electrophoresis. Each colloidal macroion
is surrounded by an oppositely charged counterion cloud, fully
screening the surface particle charge on a length scale of the
order of the Debye–Hückel length λDH. An externally applied
electric field ‘sees’ the overall particle + counterions system as
electrically neutral: no ‘bulk’ driving force is therefore present.
It is the interfacial motion and redistribution of the counterions
that actually drives particle motion. As for thermophoresis
in gases, particle motion can again be envisaged as a
hydrodynamic slip effect. Here, the inhomogeneous region
where the fluid velocity field v(r) is non-zero is of the order
of λDH (playing a role similar to λ for thermophoresis in
gases). Due to their great practical interest, electrokinetic
effects have been of course extensively studied. In general, the
electrophoretic mobility is a complex function of the surface
particle potential and solution ionic strength7. Here, we only
recall that, in both limiting cases κa � 1 and κa � 1, where
κ = (λDH)

−1, the electrophoretic mobility does not depend
on particle size, provided that the ζ -potential (the electrostatic
potential at a distance from the particle surface where v(r) is
equal to the particle drift velocity) is constant.

Interfacially driven motion can however also be induced
by different methods, for instance by creating gradients of
pH, concentration of an osmolyte or, more generally, of the
chemical potential of the solvent. These effects, collectively
known as ‘diffusiophoresis’, differ from electrophoresis since
they are non-equilibrium phenomena where no ‘external field’
is present. Nonetheless, they share the property of being
essentially related to particle surface (not bulk) properties8.

6 We point out that vT does not depend on a also for K n � 1. Dependence
on particle size is present only for K n ∼ O(1).
7 For time-varying electric field, additional complex effects such as ion
retardation and double-layer polarization make the analysis much harder.
8 In spite of its name, dielectrophoresis, driven by the difference between
solvent and particle dielectric constants, is not in this sense a phoretic effect
(dielectrophoretic forces are indeed proportional to the particle volume).
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In the past, noticeable attempts to give a general picture
of phoretic motion have been made by Derjaguin [29] and
Anderson [30]. Since phoretic motion is driven by interfacial
stresses localized in a thin region of thickness δ close to the
particle surface, calculation of the velocity field proceeds in
general by determining the flow within this internal region,
evaluating the slip at the particle surface, and plugging it as an
effective boundary condition in the Navier–Stokes equations.
A general conclusion which can be drawn by these approaches
is that, provided δ � a, the steady-state particle drift velocity
does not depend on the particle size. This result is further
supported by a recent general model of interfacial transport due
to Ajdari and Bocquet [31].

Derjaguin and Sidorenkov [32] explicitly considered the
case of thermophoresis (or, more precisely, the related effect of
thermo-osmosis, i.e. thermally driven flow of liquids near solid
surfaces), obtaining in the quasi-planar approximation δ � a
a particle drift velocity

vT = −2∇T

ηT

∫ δ

0
	h(z)z dz, (7)

where 	h(z) is the solvent excess enthalpy due to interactions
with the particle surface within the internal region. Although
quite interesting in connection with the recent theoretical
attempts presented in section 5, equation (7) cannot be
easily compared to experimental results. A more interesting
approach, giving an illuminating physical picture of phoretic
effects, is due to Ruckenstein [33]. Noticing that in the limit
of a λDH � a and low surface potential the electrophoretic
velocity vE of a colloidal particle can be written as vE =
(−λDH/η)∇γ , where γ is the electrostatic contribution to
the interfacial tension, Ruckenstein suggests that a similar
expression for the steady-state drift velocity may hold for any
kind of phoretic motion:

vT ∼ −�∇γ /η (8)

where � is a characteristic length of the order of δ. Phoretic
motion is therefore envisaged as a kind of ‘Marangoni effect’
due to interfacial tension gradients caused by an external field
(or composition, pH, temperature differences) in the diffuse
inhomogeneous region close to the particle surface.

3. Experimental methods

The key reason for the recent noticeable increase of
experimental investigations of particle thermophoresis in
liquids has been the development of new, sensitive techniques,
allowing us to obtain a rather large set of accurate data on
different systems. In this section, we shall critically review
these new techniques, describing their respective advantages
and limits, but also pointing out the possibility of further
developments.

Traditionally, the experimental methods for studying the
Soret effect in binary liquid mixtures have been based on
applying a thermal gradient to a suitable diffusion cell,
and devising ingenious ways to detect the concentration
gradients induced by thermal diffusion. In principle,

the simplest way to do it would be placing the sample
between two horizontal plates across which a constant
temperature difference 	T is maintained, and comparing
the composition of the solution at steady state close to
the two plates. However, the fractional separation of the
components is generally small, and careful sampling of the
local concentration presents non-trivial practical problems.
Much better separation can be obtained by exploiting the
concurrent action of thermal diffusion and buoyancy-driven
convection in ‘thermogravitational’ columns [34], where a
horizontal temperature gradient is imposed between two long
vertical closely spaced surfaces, leading to the formation of a
natural convection roll. Components that, because of thermal
diffusion, preferentially drift to the cold (hot) plate become
enriched at the bottom (top) of the column. This method
(which was first tentatively used for isotope separation [35])
may lead to very high (even complete) component separation.
Thermogravitational columns are however rather inefficient
when dealing with colloidal suspensions, since, due to the very
low diffusion coefficient of the solute, the timescale needed to
obtain a sufficient separation ratio may be extremely long.

3.1. Optical probing: beam deflection methods

Optical probing of a concentration gradient is a very convenient
way to overcome some of the basic limitations of the traditional
methods. Provided that the refractivities of the particles and
solvent are not exactly matched, a refractive index gradient ∇n
is unavoidably associated with ∇c. Its noticeable effects on
beam propagation allow measuring concentration differences
which may be far smaller than those detectable by common
analytic methods. More important, probing is carried out in
situ (does not require any sampling), and absolute values for
ST can often be obtain by direct comparison with optical effects
on the pure solvent, with no reference to the specific apparatus
geometry. Finally, using moderately focused laser beams,
thermal gradients can be imposed on spatial scales which
are rather small (although not very small), yielding shorter
measurement times than with thermogravitational columns.

All these positive features are fully exploited by the
simple but powerful ‘beam deflection’ method (BD), originally
developed by Giglio and Vendramini, which takes advantage
of the deflection of a laser beam propagating along the
horizontal direction x̂ through an optically inhomogeneous
medium with ∇n = (dn/dz)ẑ. The investigated solution is
enclosed in a cell made of an optical glass frame sandwiched
between two horizontal thermally conducting plates separated
by a small vertical gap h. When a small temperature
difference is rapidly imposed between the two plates, the beam
undergoes a first rapid angular deflection (	ϑ)th due to the
temperature dependence of the solvent refractivity, followed
by a much slower change 	ϑs(t) due to progressive buildup
of the concentration gradient associated with thermophoresis,
eventually leading to an additional steady-state deflection
(	ϑ)s. The two contributions are easily discriminated since
they are widely separated in timescales, respectively set by
the solvent thermal diffusivity χT and by the particle diffusion
coefficient, with χT � D. To measure beam deflection, a
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position-sensitive detector is usually placed along the beam
path sufficiently far from the cell. The Soret coefficient is
simply evaluated as

ST = −1

c

∂n/∂T

∂n/∂c

(	ϑ)s

(	ϑ)th
, (9)

where ∂n/∂T and ∂n/∂c are respectively the temperature and
concentration dependence of the refractive index. In addition,
the time dependence of 	ϑs(t), which reaches its steady-state
value exponentially with a time constant τ = h2/(π2 D),
allows evaluation of the particle diffusion coefficient, and
therefore DT = ST D.

The BD technique, besides being conceptually and
practically very simple, has the key advantage of exploiting
an intrinsically differential detection scheme. Equation (9)
indeed shows that ST can be obtained by comparison to the
pure ‘thermal’ deflection contribution knowing only the values
of ∂n/∂T and ∂n/∂c, with no need to use any geometrical
or optical parameter of the specific experimental setup. As a
matter of fact, it is not even necessary to calibrate the system
with the sample which is actually investigated, since it is
sufficient to measure (	ϑ)th for any reference solvent. Finally,
since for the typical values of the interplate gap the threshold
for the Rayleigh–Benard convection of the pure solvent is very
high, both the top and the bottom surfaces can be used as the
hot plate, the latter choice being mandatory for ST < 0 to
avoid the much more serious convection problems generated
by inverted concentration profiles.

The main limitation of the BD method is that the interplate
gap h cannot be reduced below a minimal value of the order
of a few tenths of a millimeter. This is not so much due
to practical construction problems, but rather to the fact that
the beam cannot be focused within the cell to an arbitrarily
small spot size w0. In order to have a well defined beam
propagation direction, indeed, the cell optical path L has to be
sensibly shorter than the Rayleigh range of the focused beam
zR = πw2

0/λ. For a wavelength λ � 0.5 μm, a cell with
an optical path of a few centimeters requires w0 � 100 μm,
corresponding, to avoid reflections, to a ‘safe’ interplate gap
h � 0.3–0.4 mm. With such a gap, the diffusion time for
a suspension of colloids with radius R � 10 nm is already
τ � 103 s, so that measuring thermophoresis of large colloids
is time consuming and requires very accurate temperature
control. A second limitation is that, to avoid the deflected
beam impinging on the top or bottom plate, the overall beam
deflection angle must satisfy (	ϑ)th + (	ϑ)s � h/L. When
(	ϑ)th is already large, the maximum temperature gradient
which can be imposed can be rather small. Therefore, BD
works much better with aqueous suspensions (due to the rather
low thermal expansivity of water) than with particle dispersed
in organic solvent, where ∂n/∂T can be much higher.

An attempt to overcome the geometrical limitations of
BD has been made by Putnam and Cahill, who have designed
a ‘micro’ BD apparatus [36]. In this setup, temperature
gradients are produced by alternately heating with a square-
wave voltage signal a pair of Au thin-film resistors fabricated
by photolithography on a glass substrate, allowing us to reduce
the plate separation to 25 μm. Since the optical path is very

small (the electrodes are only 250 μm thick), detection is
made in the frequency domain via a sensitive lock-in amplifier,
allowing us to obtain both the in-phase and out-of-phase
components of the BD signal. This ingenious approach allows
us to reduce substantially the time duration of BD experiments,
although, when the frequency of the applied T -signal is very
low, rather long accumulation periods are still needed.

3.2. All-optical methods

A very efficient reduction of the spatial region where particle
diffusion is probed, and therefore of the measurement time,
can be obtained by inducing localized thermal gradients via
laser beams. This can be done either by exploiting a moderate
optical absorption of the sample at the frequency of the
incoming beam, or by adding a small quantity of a suitable
dye acting as an absorber. In one of these techniques, thermal
lensing, which we shall consider in more detail, the beam
acts at a same time as a ‘pump’ and as a ‘probe’. Other
schemes, which we shall review only briefly, either use an
additional probing beam, or rely on the detection of the
fluorescence signal from suitable particles. At variance with
BD methods, these all-optical methods do not require any
complicated custom-designed cell, and, at least in the case
of thermal lensing, can be implemented with a simple optical
design. On the other hand, all-optical methods require careful
consideration of spurious convection problems, which can
seriously limit their performance.

3.2.1. Thermal lensing. Thermal lensing (TL) is a self-
effect on beam propagation taking place when a focused laser
beam heats up a partially absorbing medium, generating a
locally inhomogeneous refractive index profile [37]. Thermal
expansion indeed induces a radial density gradient, which in
its turn yields a quadratic refractive index profile acting as a
negative lens that increases the divergence of the transmitted
beam. Beam widening can be very accurately measured by
detecting changes of the central beam intensity, a feature that
makes TL suitable for absorption measurements in simple
fluids with extinction coefficients as low as 10−7. For this
reason, TL has been established as a highly sensitive technique
for trace analysis in chromatography and electrophoresis,
both in its basic configuration and in more sophisticated
instrumentation design including double beam, differential,
spectrally tunable setups [38].

Besides its excellent performance as a spectroscopic
method, TL can be profitably exploited for investigating
thermophoresis. Indeed, in fluid mixtures or suspensions,
thermal diffusion also leads to the progressive buildup of a
concentration gradient within the heated region, which acts
as an additional lenslike element. This ‘Soret lens’ can be
either divergent or convergent, depending on the preferential
drift direction of the component having the largest index of
refraction. As a result, the spreading of the transmitted
beam may further increase, or conversely lessen. As for
BD, ‘thermal’ and ‘Soret’ lensing effects take place on
widely separated timescales, due to the different order of
magnitudes of thermal diffusivity and mass diffusion. The first
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application of thermal lensing to thermal diffusion was made
again by Giglio and Vendramini [39], who measured thermal
diffusion close to a critical point in the strongly absorbing
aniline/cyclohexane mixture. Aqueous colloidal suspensions,
however, generally present negligible absorption in the visible
range, so that, to obtain a significant TL signal, absorbing
dyes are often added. Yet, extreme attention must be paid to
avoid dye bleaching or preferential absorption on the particle
surface. Moreover, dye molecules are often charged, limiting
therefore the lowest ionic strength that can be attained for
charged suspensions. An alternative strategy is that of directly
exploiting water absorption in the near infrared, for instance
at λ � 980 nm, due to combinations of vibrational overtones.
A practical additional advantage is that reliable, tunable, and
relatively inexpensive semiconductor laser sources have been
developed in this wavelength range due to its interest for
optical communications.

We shall only recall only those theoretical results for TL
that are experimentally most relevant, deferring the reader
to the comprehensive analysis performed in [40] for further
details. The ‘purely thermal’ and ‘Soret’ contributions to the
beam divergence are respectively related to the dimensionless
‘thermal lens numbers’

ϑth = − Pbl

κλ

∂n

∂T

ϑS = Pbl

κλ

∂n

∂c
STc(1 − c)

(10)

where P is the optical power of the beam incident on a sample
with thermal conductivity κ and absorption coefficient b, and l
is the optical path length. Provided that ϑth, ϑS � 1, the Soret
coefficient can be extracted by a comparison of the steady-state
total change of the intensity at the beam center 	IS+th to the
change purely due to the thermal expansion of the fluid	Ith as

	IS+th

	Ith
= 1 − STc̄(1 − c̄)

∂n/∂c

∂n/∂T
, (11)

which parallels the expression obtained for the BD method. An
important experimental aspect of the BD technique is that the
signal strongly depends on the position of the cell with respect
to the beam focus. In particular, the TL effect vanishes if the
cell is placed exactly at the beam waist while, if one takes
into full account lens aberration effects using a full diffraction
analysis, the effect is maximized by placing the cell at a
distance z = √

3zR from the focus9.
The crucial problem in TL measurements is that radially

symmetric beams necessarily generate a horizontal component
in the temperature gradient, and therefore free convection is
unavoidably present, regardless of the chosen experimental
configuration. For simple fluids, the disturbance of the
density profile (developing on a timescale set by the heat
diffusivity χ ) due to convection effect is minimal, and has

9 Measurements of TL signals can also be made by recording the full
dependence of the central beam intensity as a function of the cell position z.
Although necessary for setup calibration, however, this protocol (commonly
dubbed ‘z-scan’) does not add any new information in comparison to simpler
measurements made with a cell fixed in the position where the signal is
maximal.

therefore generally been disregarded. The situation of totally
different for the concentration gradient induced by thermal
diffusion, whose characteristic buildup time is fixed by D.
The basic strategy to limit convection effects is reducing
the measurement duration so much that, on the required
experimental timescale, perturbations of the concentration
profile are negligible. This can be safely obtained by placing
the optical axis of the apparatus vertically (which allows use
of cells with a short optical path, therefore limiting the vertical
height over which buoyancy acts), or by sufficiently focusing
the incident beam. Strong beam focusing, however, severely
reduced zR, and therefore the maximum useful optical path
length.

When compared to the BD method, TL allows studying
suspensions of particles with a much bigger size. For small
particles, the accuracy of the values for ST obtained with the
two methods is comparable, although BD generally yields
more accurate values for the diffusion constant, and therefore
for DT. Obviously, TL would perform almost ideally in the
absence of gravity, so that, due to its extreme optical simplicity
(essentially a laser source, an electro-mechanical shutter, a
focusing lens, a standard cuvette, and a photodiode) it is an
extremely promising technique to measure thermophoresis in
space.

3.2.2. ‘Thermal diffusion’ forced Rayleigh scattering
(TDFRS). This approach bears many points in common
with similar techniques, commonly (but rather improperly)
dubbed ‘forced Rayleigh scattering’ (FRS) methods, which
are used, for instance, in hydrodynamic flow visualization,
particle velocimetry, or colloidal electrophoresis. Basically,
they consist in reading, via a probing beam, the transient
diffraction grating created in a sample by two mutually
coherent excitation (‘pump’) beams propagating through the
sample with slightly different incident wavevectors. If the
pump wavelength is partially absorbed by the fluid or, as more
commonly made, if a suitable absorbing dye is added to the
sample, a diffraction grating, due as in the TL method to the
temperature dependence of the refractive index, builds up on
a timescale set by the thermal diffusivity. In the presence of
thermal diffusion, the associated sinusoidal temperature field
leads to the progressive buildup of a concentration gradient,
which in turn modifies the refractive index profile, changing
the grating diffraction efficiency, whose time dependence
is read by measuring the intensity of the Bragg-diffracted
probing beam [41]. As in the TL method, the measurement
scheme is intrinsically differential. Another advantage of
TDFRS is that only the Fourier component at the grating
wavevector contributes to the signal, which allows for an
easier de-convolution of multiple decay functions obtained for
polydisperse colloids or polymer solutions with a large Mw

distribution. However, also for TDFRS, inverted temperature
gradients and therefore convection effects are unavoidable. In
principle, these effects can be limited very easily by increasing
the spatial frequency of the grating, which is fixed by the
crossing angle θ between the pump beams. In practice,
however, large values of θ , besides requiring the grating to
be treated as a fully three-dimensional holographic pattern
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using the rather complex Raman–Nath theory, generally lead
to a substantial reduction of the diffraction efficiency. An
interesting alternative method to easily generate diffractive
concentration gratings with high spatial frequency has been
recently proposed by Hartung and Köhler [42]. In this setup,
a linear array of transparent ITO (indium tin oxide) strips,
sputtered on the inner window of the measuring cell, can be
electrically heated to create a periodic temperature modulation,
while detection of the associated Soret-induced concentration
gradient is pretty similar to standard TDFRS. This new method,
which bears some similarity to the approach taken in [36],
may potentially retain the advantages of all-optical methods,
while at the same time benefiting from a well defined thermal
geometry with negligible convective effects.

3.2.3. Fluorescence detection schemes and single-particle
tracking. Spurred by great advancements in optical
microscopy, such as confocal detection schemes and advanced
particle-tracking methods, direct visualization of colloidal
particles has became more and more popular in the last
decade. It is therefore tempting to see whether studies of
thermophoresis could be performed using ‘standard’ video
microscopy instrumentation and techniques. The basic strategy
of this approach, which has been mainly followed by Braun
and coworkers [43], consists (as in TL) in inducing a
very localized thermal gradient by the adsorption of a laser
beam, using however simple cells, built from microscopic
slides or capillaries, and standard microscope optics. Using
fluorescent-dyed particles, the concentration profile can be
reconstructed by monitoring through the microscope the spatial
and time dependence of the fluorescence intensity. The
major advantage of this method is that of exploiting standard
fluorescence microscopy instrumentation and techniques, with
no need for specific optical schemes or custom-designed cells.
Fluorescence detection methods are moreover so sensitive that
even extremely particle low concentrations can be measured.
There are obviously also disadvantages. First of all, the method
works only for particles that are intrinsically fluorescent, or
made such by adsorption of a dye. Moreover, absolute
fluorescence intensity measurements are also notoriously hard,
due to the difficulty of quantitatively taking into account
dye-bleaching effects. Finally, monitoring the temperature
field is non-trivial. Braun and coworkers have developed the
ingenious strategy of using as a temperature probe a dye whose
fluorescent emission is temperature dependent. Nonetheless,
the sensitivity of this probe is rather low (a few per cent
per degree), so that much higher temperature gradients are
needed than those used in TL measurements. But the key
advantage of the method is that, provided that particles are
sufficiently big that individual particle emission is resolved,
colloid thermophoretic motion can be directly visualized.
For suspensions of very large particles (say, in the few μm
range), where even all-optical techniques become unbearably
slow, single-particle tracking by fluorescence microscopy is
currently the only method to obtain vT, and therefore DT.
It is useful to consider the role of the characteristic length
�T in particle-tracking experiments. For the contribution
of thermophoretic drift to be an appreciable fraction of the

particle rms displacement, the latter has to be comparable to
�T. The minimum tracking time will therefore be shorter for
very large particles or high thermal gradients.

4. Experimental results

4.1. A survey of investigated systems

4.1.1. Colloidal latex particles. Suspensions of rigid,
monodisperse spherical particles have traditionally been the
‘test bed’ for colloid physics. One may therefore regard them
as the best candidate to investigate the basic mechanisms of
thermophoresis: the experimental status is conversely rather
disappointing. Indeed, thermophoresis seems to strongly
depend on detailed surface chemistry properties. For instance,
polystyrene (PS) and silica particles of similar size and surface
charge, in ionic strength conditions where they can be regarded
just as ‘hard spheres’ as concerns colligative properties, may
display a Soret coefficient of opposite sign. Besides, adsorbing
a thin layer of surfactant or grafting a short polymer chain may
lead to dramatic changes in ST. Unfortunately, the surface
chemistry of ‘standard’ colloidal latices is far from being
standardized. The bare particle charge Q cannot be carefully
controlled, stated charge values should be taken with great care
(for large colloids, careful charge titration is difficult), and
electrokinetic parameters such as the ζ -potential are not easily
related to Q. The surface properties of inorganic particles such
as silica colloids strongly depend on pH and, for commercial
silica, on the presence of ‘stabilizing’ counterions. Residual
surfactant is often present on the surface of polymer latex
colloids obtained by emulsion polymerization, even when the
batches are sold as ‘surfactant-free’. An additional practical
problem is that most experimental methods perform better with
suspension of particles of relatively small size (say, tens of
nanometers), notoriously hard to obtain with a narrow size
distribution.

Nonetheless, in the last few years a number of interesting
studies have been performed on dispersions of monodisperse
colloidal particles. An extensive study of polystyrene
suspensions as a function of (nominal) surface charge, pH,
ionic strength, and nature of the added salt has been performed
by Putnam and Cahill [36]. PS particles have been used
also by Duhr and Braun [44], and more recently by Braibanti
et al [45] to investigate some basic features of particle
thermophoresis, such as the dependence on particle size and
temperature. Nonaqueous suspensions of sterically stabilized
silica particles, where the particle/solvent interaction potential
is tuned by temperature, have been studied by Ning et al
[46]. The results of these studies will be analyzed in the
next section. Other measurements, in particular in ferrofluids,
where complex cross-effects of thermal gradients and magnetic
fields are observed [47], have been mostly performed using
rather polydisperse suspensions. Taking into account the
specific purpose of this review, aimed only to scrutinize the
basic mechanisms of thermophoresis, they will not be further
discussed in what follows.
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4.1.2. Surfactant aggregates. Studies of micellar solutions
formed by surfactant molecules in water provide in our view
a unique occasion to understand the role of particle/solvent
interactions in thermophoresis, due to the broad class of
very different amphiphilic molecules that can be investigated.
Varying the chemical nature of the hydrophilic head
group exposed to the solvent (simple or aromatic salts,
carboxylic acids, zwitterionic amino acids, fatty alcohols,
polyoxyethylenes, sugars, to cite a few) allows us indeed to
obtain widely different interaction forces with the solvent.
Globular micelles are moreover small colloids, in the few
nanometers range, which do not require long measurement
times and are less sensitive to spurious convection effects.
Finally, the micellar structure can often be drastically
changed by varying the solvent composition, surfactant
concentration or temperature, allowing us to investigate effects
on thermophoresis of structural re-organization phenomena. A
first detailed investigation of a micellar solution of sodium
dodecyl sulfate (SDS), where some of the general features
of thermophoresis we shall discuss were first observed, has
been performed by Piazza and Guarino [48]. The same
group then studied thermophoresis in mixed micelles or ionic
and sugar surfactants [49]. Nonionic polyethylene glycol
surfactants, which generally display a critical consolution
point with water, have been investigated by Ning et al [50].
Nonetheless, considering the promise of micellar solutions
as model systems, the number of investigated systems is
still very limited. This is yet more true when taking
into account that amphiphilic molecules are the building
blocks of other interesting structures besides micelles. For
instance, thermodynamically stable water-in-oil (W/O) or
oil-in-water (O/W) microemulsion droplets, whose size can
often be carefully tuned in a moderately large range, can
form in ternary water + oil + surfactant solutions. So far,
the only investigated system has been AOT/iso-octane/water
W/O microemulsions [51]. Double-chain amphiphiles such
as phospholipids can also form large, monodisperse vesicles,
which could be an interesting candidate to investigate cell
thermophoretic migration. It is therefore evident that further
investigation of amphiphilic systems is sorely needed.

4.1.3. Proteins and biological macromolecules. As we shall
see, the peculiar temperature dependence of aqueous colloid
thermophoresis allows design of new fractionation methods
relying on particle/solvent interfacial properties. Given the
current pressing demand for new separation techniques, the
study of thermophoretic effects in biology-related systems
may have useful consequences for applications. There are
however also basic motivations for investigating biological
macromolecules. Globular proteins are small colloids
presenting peculiar features that allow investigation of a
number of interesting aspects of particle thermophoresis in
liquids. Their net charge, stemming from the dissociation
balance of acid and basic groups, can indeed be carefully
trimmed by varying the solution pH. Moreover, their water-
exposed surface may be envisaged as a ‘tartan’ made of
hydrophilic and hydrophobic patches. Due to the complex
nature of hydrophobic effects, protein interactions with

water strongly depend on temperature, and very strong
salt-specificity effects on solubility are observed. So far,
thermophoresis in protein solutions has been studied only
for a few simple proteins like lysozyme [52] and β-
lactoglobulin [49]. The few existing studies of DNA
thermophoresis [53, 43] have shown that the concurrent action
of thermophoresis and convection may lead to a noticeable
DNA focusing effect of possible interest as a biochemical
concentration method. As for surfactants, there are therefore
ample margins for the study of thermophoresis in biology-
related systems.

4.1.4. Polymers. Polymer physics is notoriously the most
advanced field in soft matter science. It is therefore not
surprising that great experimental and theoretical efforts have
already been devoted to understand thermal diffusion in
polymer solutions (actually, till the end of the last century,
polymers have practically been the only investigated soft
matter system). Since thermal diffusion in polymer solutions
has recently been reviewed [14], we only discuss here some
selected theoretical and experimental results that may be useful
for what follows.

The main theoretical prediction concerning polymer
thermophoresis is that DT should not depend on the molecular
weight Mw . The original idea, due to Brochard and De
Gennes [54], is not so much based on scaling considerations,
but rather on a clever combination of non-equilibrium
thermodynamics and hydrodynamic concepts. Their argument,
quite often misreported, can be sketched as follows. Consider
a polymer simultaneously subjected to a thermal gradient and
to an arbitrary external field f. Due to Onsager reciprocal
relations, the thermophoretic contribution to the polymer drift
velocity (which adds to the value v = f/ f for ∇T = 0)
must equal the contribution of f to heat transport. The latter
can be written as the sum of a term J1 proportional to the
friction on each monomer plus a hydrodynamic term J2 related
to ∇2vs(r), where vs(r) is the solvent velocity field. Their
key result is that, because for Stokes flow ∇2vs(r) is very
short ranged, J2 leads only to a ‘renormalized’ value for
J1. In other words, long-ranged hydrodynamic interactions,
playing a crucial role in fixing f , have conversely no effect
on heat transport. As a consequence, the ‘reciprocal’ heat
flux is simply proportional to the number of monomers, and
DT does not depend on Mw . Experimentally, this results
has been extensively verified for sufficiently long chains both
in dilute [55, 56] and semidilute [57] polymer solutions10.
The situation may be very different for charged polymers.
In a preliminary study of a solution of sodium polystyrene
sulphonate (NaPSS) in water, Iacopini et al [49] found that
DT actually decreases (approximately as DT ∼ M−1/4

w ) with
the molecular weight of the polyelectrolyte. Long range
electrostatic interactions seem therefore to introduce those
inter-monomer correlations for DT which are not brought by
hydrodynamic effects.

Besides molecular weight effects, however, there are other
aspects of polymer thermal diffusion that would deserve to

10 Accurate studies of PS in toluene [58] have however shown that, due to end-
effects, Mw -independence breaks down for Mw < 5 × 103.

9



J. Phys.: Condens. Matter 20 (2008) 153102 Topical Review

Table 1. Values of D̃T and D for some selected colloidal systems.

System
D̃T

(10−6 cm2 s−1)
D
(10−6 cm2 s−1) Ref.

SDS 12.8 1.0 [48]
Triton X100 7.45 0.58 [45]
NaPSS (Mw = 74 kDa) 7.15 0.53 [49]
PS spheres (R = 53 nm) 4.7 0.03 [45]
PS spheres (R = 253 nm) 4.3 0.007 [45]

be investigated, such as the dependence of DT and ST on
the specific physicochemical properties of the solvent. A
quantitative analysis of solvent effects has been performed by
Hartung et al [42], who have measured thermal diffusion of PS
in seven different solvents. The main result of this investigation
is that DT is inversely proportional to the solvent viscosity
(and, therefore, ST does not depend on η). Recently [59],
the same group has extensively investigated semidilute and
concentrate polymer solutions, finding that the concentration
dependence of DT closely parallels that of the solvent self-
diffusivity Ds

s . Since Ds
s may be viewed as a local probe

for friction on a length scale of a polymer segmental unit,
they argued that local friction is the dominating parameter
determining the concentration dependence of DT. Conversely,
at least for polystyrene, DT seems to be very little affected
by the kind of solvent quality. Yet, a detailed analysis of
possible correlations between DT and the Flory parameter
χ , which quantifies the ‘quality’ of the solvent, is still
lacking, with the only possible exception of measurements
performed in the vicinity of the coil-to-globule transition of
poly(N-isopropylacrylamide) in water [60], showing that, by
approaching the polymer θ -temperature, ST first displays a
moderate increase, followed by a sharp reduction of a factor
of five when water becomes a bad solvent.

4.2. Some general experimental features

4.2.1. Specificity and universality. Thermophoresis in liquids
displays a curious two-faced nature. On the one hand, the order
of magnitude of DT is rather ‘universal’. For most investigated
systems, the thermophoretic mobility varies indeed within
the fairly limited range 10−8 < DT < 10−7 cm2 s−1 K−1.
For example, we have collected in table 1 some selected
values of the ‘rescaled’ thermal diffusion coefficient D̃T =
T DT for aqueous systems ranging from micellar solutions to
polymers and spherical latex particles. Strikingly, while D
varies by more than two orders of magnitude, D̃T changes
by no more than a factor of three. Notice also that, for large
colloids, D̃T � D, so that for equal fractional concentration
and temperature gradients ∇c/c, ∇T/T , thermal diffusion is
dominant. On the other hand, the variation of DT among
different colloidal systems cannot be easily related to simple
bulk or surface particle properties (with the trivial exception
of the difference in thermal conductivity with the solvent,
which sets the local temperature field). Such a baffling
feature is fully evidenced by the extensive investigation of
PS colloids by Putnam and Cahill [36], where the value or
even the sign of ST were found to strongly depend on the

Figure 1. Temperature dependence of the Soret coefficient for some
aqueous colloidal systems, fitted using equation (12). Detailed
experimental conditions are given in [49].

kind of the surface charged groups and buffering conditions,
while ionic strength effects display a marked salt-specificity.
The strict relation between thermophoresis and the detailed
nature of particle/solvent interactions has been fully evidenced
in measurements of solutions of SDS + dodecylmaltoside
(DM) [49]. By varying the relative weight fraction of the two
surfactants, which form almost ideal mixed micelles, ST can
indeed be varied continuously between the limiting values (of
opposite sign) for the pure compounds.

4.2.2. Temperature dependence. Thermophoresis often
displays a strong dependence on temperature, which was
originally singled out for protein solutions [52], and later
observed for many other aqueous and nonaqueous colloidal
systems [49, 61–63]. The general temperature trend is the
following: particles diffuse to the cold for sufficiently high
temperatures, while ST < 0 (so that particles display a
‘thermophilic’ behavior) below a well defined temperature T ∗.
The full temperature dependence of ST(T ) is generally very
well described by the empirical fitting function [52]:

ST(T ) = S∞
T

[
1 − exp

(
T ∗ − T

T0

)]
, (12)

where S∞
T represents a (positive) high-T asymptotic limit,

and the rate T0 of exponential growth embodies the strength
of temperature effects. A closer look at representative data
sets, taken from [49] and shown in figure 1, allows extraction
of some general features of the temperature dependence of
ST. First of all, we noticed that, for some systems that we
shall dub ‘athermal’, T ∗ approximately coincides with the
temperature where water has its maximal density. Moreover,
the results obtained for NaPSS and SDS respectively suggest
that T ∗ depends neither on the polymer molecular weight,
nor on interparticle interactions. The value of the sign-
switching temperature seems therefore to be a single-particle
property that does not depend on particle size. For other
systems, however, T ∗ can be very different. For instance,
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surfactants such as DM, having a sugar head group, have
a much higher value of T ∗, therefore displaying at room
temperature a thermophilic behavior. It is also useful noticing
that the two investigated protein solutions display different
values for T ∗. In principle, therefore, a mixture of lysozyme
and β-lactoglobulin could be fractionated by thermophoresis.

For ‘athermal’ systems (mostly colloidal solutions where
the particle/solvent interactions are predominantly electro-
static), ST(T ) closely mirrors the temperature dependence of
the thermal expansivity of the solvent, α(T ) = −1/ρ(dρ/dT ).
Indeed, the dimensionless ‘rescaled’ Soret coefficient S̃T =
ST/α(T ) does not appreciably depend on T . For other systems,
however, the relation between ST and α(T ) is not so simple
and, to fit the data, a temperature-independent ‘excess’ contri-
bution Sexc

T has to be introduced, writing ST = α(T )S̃T + Sexc
T .

Although the temperature effects we have discussed are rather
general, we point out that, for a few aqueous systems such as
poly-ethyleneglycol (PEG) solutions, ST shows a very weak
dependence on T (curiously, PEG conversely shows a pro-
nounced T -dependence in water/ethanol mixtures) [64].

4.2.3. Particle size dependence. How do ST and DT depend
on the particle size a? We should be a bit careful in posing
this question, since interparticle interactions will in general
introduce additional length scales besides a. Here we shall
focus only on situations where the range of particle/solvent
interactions is much shorter than a, which is therefore the
only relevant length in the problem. Apparently, some of
the topics we have discussed already give strong hints for
a solution. In the quasi-hydrodynamic limit, the particle
thermophoretic velocity in gases, and therefore DT, does not
depend on a. General arguments on colloidal ‘phoretic’ motion
lead to the same conclusion. Finally, DT does not depend
on the molecular weight (and therefore on the hydrodynamic
radius of the coil) for dilute solutions of polymer chains, which
can in all respects be regarded as ‘soft’ globular colloids.
Therefore, a size-independent thermophoretic mobility DT

(implying ST ∝ a) should also be reasonably expected for
rigid colloids. Assuming DT ∝ as with s > 0 also leads
to unphysical consequences when we consider the reciprocal
effect of thermo-osmosis, i.e. the flow of a liquid past a surface
along which a longitudinal thermal gradient is maintained.
Since the thermophoretic velocity is simply related to the
thermo-osmotic velocity ṽ of the fluid by the reciprocal
theorem for low Reynolds-number hydrodynamics [65], ṽ
would indeed diverge for a flat surface. A size-independent
thermophoretic mobility has actually been found for water-
in-oil AOT microemulsions where the microemulsion droplet
radius R was varied between 2 and 15 nm by changing the
water/surfactant ratio [51]. For aqueous suspensions of rigid
colloids, the status of the experimental results is however more
controversial. Investigating PS latex colloids covering more
than two decades in a, Duhr and Braun [44] rather concluded
that DT ∝ a and ST ∝ a2. This conclusion has however
been questioned by Putnam et al [63], who detected relevant
temperature effects for the same system, and found that the
high temperature limit S∞

T rather scales linearly with a. The
latter result has been recently confirmed by Braibanti et al

Figure 2. Size dependence of the Soret coefficient for PS colloids
obtained by Duhr and Braun [44] ( ), Braibanti et al [45]
(T = 35 ◦C, •), and Putnam and Cahill [63] (S∞

T , ◦), together with
values obtained for AOT W/O microemulsions by Vigolo et al [51]
(
�).

[45], who actually showed that, provided that the particle
surface properties are carefully ‘standardized’, particles with
a diameter 20 � a � 500 nm very closely share the same
DT(T ) over the whole temperature range 5 ◦C � T � 40 ◦C.
No sound explanation of this serious experimental discrepancy
has so far been suggested. Here we simply recall that, for the
measurements presented in [44], data fitting seems to imply a
T -independent value of ST, although temperature differences
as large as 	T � 8 K were applied: conversely, both the
data reported in [63] and in [45] suggest that ST can vary
by more than 50% within a similar T -range. Data sets for
the size dependence of ST in PS suspensions are collected in
figure 2, together with the results obtained in [51] for AOT
microemulsions. Curiously, the latter show not only the same
general trend, but also absolute values that are close to those
found for rigid colloidal particles.

4.2.4. Electrostatic interactions. Screened Coulomb
interactions may noticeably influence thermophoresis and
complicate the analysis, since the Debye–Hückel screening
length λDH represents a new intrinsic length scale beside a.
The strong contribution of electrostatic forces to ST has been
pointed out for the first time in the experiments performed on
SDS solutions [48], where conspicuous collective effects due
to the micellar charge were also observed (see below). By
extrapolating ST to the zero-concentration limit, Piazza and
Guarino suggested that, in the single-particle limit, ST ∝ λ2

DH.
As we shall see in section 5.5, this scaling relation is strongly
debated. Unfortunately, quantitative studies on other ionic
surfactant systems, which may help in settling the question,
are still lacking. One of the difficulties in dealing with
micellar solutions is that the critical micellar concentration
(c.m.c.) of charged surfactants is generally rather high, in
particular in the absence of added salt, so that a non-negligible
amount of free (non-micellized) surfactant, which contributes
to the solution ionic strength I , is generally present. Stating
an accurate value for λ2

DH is therefore a delicate problem.
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A few charged surfactants with a very low c.m.c. (mainly
because of their very large head groups) exist, but they are
quite difficult to obtain in sufficient amount (and are therefore
very expensive). Another candidate to investigate electrostatic
effects is solutions of globular proteins, offering in addition,
as we discussed, the opportunity of tuning the particle charge.
So far, however, studies of protein solutions have been limited
to rather large values of I (mainly because of the need of
buffering the solution), where electrostatic effects are found
to be rather weak [52]. As already discussed in 4.1.1 and 4.2.1,
the situation is much more controversial for rigid colloidal
particles. Here we only notice that, for big particles, charge
effects may generally be expected to be much weaker, since
both their surface charge density and the maximum achievable
value of the ratio λDH/a are usually much smaller than for
suspensions of small colloids.

4.2.5. Collective effects. As we shall see in section 5,
developing a consistent model for the thermophoresis of a
single colloidal particle, capable of accounting for the main
experimental observations we have just discussed, is far from
being easy. Working out a complete theory, taking into account
also collective properties, may therefore seem a formidable
task. Yet, the contribution of interparticle interactions to
thermophoresis may be qualitatively simpler to gather than
single-particle effects. It is therefore worth recalling some
experimental results concerning the dependence of ST and
DT on particle concentration. Striking collective effects on
thermophoresis were originally singled out in [48]. Indeed,
while in the dilute limit ST grows with λDH, electrostatic
intermicellar interaction leads, even at moderately low SDS
concentration, to a totally reversed behavior, so that ST actually
increases with increasing salt concentration. A quantitative
analysis of collective effects, made via a virial expansion,
suggests ST to be proportional to the osmotic compressibility
kT = [n(∂�/∂n)]−1 of the solution, where n is the particle
number density. In [48], this relation was accounted for
by assuming DT to be insensitive to structural properties,
and observing that D depends on kT through the generalized
Stokes–Einstein relation. Qualitatively, it is simple to see why
ST should be related to kT: repulsive interparticle forces (low
kT) hinder the buildup of concentration gradients, whatever
their origin, while, conversely, attractive interactions promote
them. More quantitatively, assume that the effect of the thermal
gradient on a single particle may be considered as equivalent to
those of an effective external force Feff = K∇T . The steady-
state condition will therefore be ∇�(c, T ) = −K∇T n, where
� may explicitly depend on T when interparticle forces are
temperature dependent. Assuming ∇T directed along z, we
get

ST = − 1

n

dn

dT
= nkT

[
K + 1

n

∂�

∂T

]
. (13)

Further support to this scaling of the collective Soret
coefficient with compressibility comes from a study of polymer
blends [66], where, far away from the mixture critical point, ST

is found to be proportional to the zero-wavevector limit S(0) of
the static structure factor.

Phase equilibria in colloidal and soft matter systems
are the most evident manifestation of collective effects. So
far, however, investigations of thermophoresis close to the
structural phase transition are very scarce. An interesting
exception is study of the glass transition of PS in toluene [67].
While both D and DT rapidly vanish approaching the
glass transition temperature, ST is totally insensitive to the
structural arrest of the system. Since the glass transition
is just a kinetic effect, bearing no structural change, this
is consistent with the formerly stated relation between ST

and S(0). It is also useful to compare this result with the
preliminary observations made by Rusconi et al [40] on a
nonionic surfactant solution approaching a liquid-crystal phase
boundary where, conversely, ST seems to vanish rather sharply.
It is however evident that further studies of simpler phase
transition phenomena, such the formation of colloidal crystal in
hard-sphere colloidal suspensions, would be extremely useful.

5. Theory

In this section we provide a brief introduction to the methods
and assumptions usually introduced for the theoretical interpre-
tation of particle thermophoresis in colloidal suspensions. The
included material is not meant to be exhaustive and the adopted
perspective mainly reflects our own perception of the subject.

5.1. Brownian motion and the Soret coefficient

An ab initio approach to thermophoresis should start with
the analysis of the distribution function of a binary mixture
in the presence of a thermal gradient [68]. However, when
dealing with a suspension of spherical colloidal particles in
a solvent we may take advantage of the large difference
in the timescales for the dynamics of the two components:
the solvent molecules and the colloids. In the limit of
extreme dilution, the interactions between colloids can also
be neglected, simplifying the problem to the case of a single
particle undergoing Brownian motion in a solvent maintained
in an external temperature gradient. As previously noted,
and discussed in [69], the structure of the temperature profile
decouples from the dynamics of the colloid, the timescale for
thermal diffusivity being much shorter than that for Brownian
motion. Then, the temperature profile quickly equilibrates
while the colloid moves. Let us assume that a simple linear
dependence T (z) = T0 + z∇T (with ∇T constant) represents
the temperature distribution in the cell. In order to evaluate the
transport coefficients, the analysis is performed to linear order
in ∇T .

Most of the theoretical studies of the Soret effect in dilute
colloidal suspensions are based on the Smoluchowski equation
describing the time evolution of the probability P(x, t) to find
the colloid at position x:

∂P

∂ t
= ∇ ·

[
− P

f
f + D∇ P

]
. (14)

Here f is the external force field acting on the colloid, while
f is the friction coefficient, which is usually given by Stokes’
law: f = 6πηa (a is the particle radius and η is the viscosity of
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the solvent). Finally, D is the diffusion coefficient, related to f
by the Einstein relation f D = kT . The stationary solution for
a low density suspension of N Brownian particles of mass m
then becomes kT ∇c = cf, with c(r) = Nm P(r). Comparing
to the definition of the Soret coefficient (3), we are led to the
basic equation

ST∇T = −βf (15)

where β = 1/kBT . Note that in applying the Smoluchowski
equation to thermophoretic phenomena, f represents the net
force exerted by the solvent on the colloid due to the presence
of a temperature gradient. It is important to stress that f is
not the total force acting on the colloid: the frictional force is
not included in f but appears separately in the Smoluchowski
equation (14). In stationary conditions, if the thermal
stochastic force, leading to particle diffusion, is neglected, the
total force F acting on the colloid vanishes identically due to
the balance between the net force f and the frictional force
− f v. In this case, the asymptotic thermophoretic velocity vT

attained by the Brownian particle is simply related to f by the
force balance condition:

vT = f
f
. (16)

The main difference among the several approaches proposed so
far for explaining the thermophoresis in colloidal suspensions
lies in the way the force f (or equivalently the velocity vT) is
evaluated.

In order to calculate f, we choose to work in the reference
frame comoving with the colloid, which is placed at the origin
of the coordinate system. The distribution function of the
surrounding fluid is modified by the presence of the colloid and
of the temperature gradient. In the colloid reference frame, a
macroscopic fluid motion sets in: the velocity profile tends to
a finite value (−vT along z) at large distance and momentum is
transferred from the fluid to the colloid.

5.2. Linear response theory and hydrodynamics

As a first step, it is convenient to study, within linear response
theory, the phase space distribution of a classical fluid in
a non-uniform temperature profile. This problem has been
investigated in the framework of dilute systems [25] on the
basis of a Boltzmann equation approach since the works of
Maxwell, Reynolds [22] and Chapman [19]. In the case of
strongly interacting systems, like liquids, a convenient starting
point is the general formalism by Mori which provides the
expressions for the distribution functions to linear order [70].

In the comoving reference frame, the external potential
V (r) acting on the solvent due to the presence of the
colloid clearly includes a hard core term and, possibly, other
contributions. The Hamiltonian of the fluid is given by the
standard form:

Ĥ =
∑

i

[
p2

i

2m
+ V (ri )

]
+ 1

2

∑
i �= j

v(ri j ) (17)

where v(r) is the two body interaction between the molecules
of the fluid. Here, the phase space functions are denoted by a

hat and the dependence on the phase space coordinates (pi , ri )

is understood. At equilibrium, the distribution function is given
by F̂0 = 1

Z e−β Ĥ but, when a non-uniform temperature profile
T (x) is present or if we allow for a velocity field v(x) in the
fluid, this expression is modified. Following Mori, as a first
guess we can introduce the local equilibrium distribution:

F̂LE = 1

Z
exp

[
−β

∫
dx

T

T (x)
Ê(x)

]
(18)

where the phase space function Ê is given by

Ê(x) = Ĥ(x)− ĵ(x) · w(x) (19)

in terms of the local energy density Ĥ(x) and the momentum
density ĵ(x) defined in [70]. The relationship between the
auxiliary field w(x) and the physical fluid velocity v(x) follows
from the identity 〈ĵ(x)〉 = ρ(x)v(x), where ρ(x) is the local
mass density of the solvent. An important assumption, at the
very basis of the hydrodynamic formalism, is that the fields
T (x), w(x) and V (x) vary slowly in space, i.e. are basically
constant on the scale of the correlation length of the fluid. In
the case of gases, this assumption corresponds to a vanishing
Knudsen number. Outside this regime, it is not possible to
adopt Mori’s formalism and the concept of local equilibrium
cannot be applied. Even when local equilibrium can be defined,
the corresponding distribution (18) is not stationary but evolves
in time. Following the notation of [70], to linear order in the
temperature and velocity field, F̂(t) is given by

F̂(t) = F̂LTE + β F̂0

∫
dx

[
ĵ a(x)wa(x)

−
∫ t

0
dτ Û(τ )

(
Ĵ ab(x)∂bw

a(x)+ Ĵ a
H (x)

∂aT (x)
T

)]
(20)

where the local thermal equilibrium (LTE) distribution
function F̂LTE does not include the w term present in (18)
and (19), being explicitly taken into account, to first order, in
equation (20). Summation over repeated indices is understood.
The time evolution operator Û(τ ) describes the exact dynamics
of the many body system with Hamiltonian (17) while the
operators ρ̂(x), ĵ a(x), Ĵ ab(x) and Ĵ a

H (x) are respectively the
local mass density, mass current, momentum flux tensor and
heat flux. The explicit expressions of these operators are
available in textbooks [70]. These quantities obey conservation
laws: in stationary conditions their divergence equals the
contribution induced by the presence of the external potential
V (r) in the Hamiltonian (17). This leads to the (linearized)
hydrodynamic equations: the continuity equation, the Navier–
Stokes (NS) equation and the heat transport equation. When
only the hard core contribution is included in V (r), the
external potential just reduces to a boundary condition on the
hydrodynamic fields, at least on length scales larger than the
correlation length of the solvent molecules.

We first evaluate the averages of the previously introduced
fluxes by use of the perturbed distribution (20) taking into
account the isotropy of the phase space distribution F̂0 (in the
absence of an external potential) and working to linear order
in the deviations from isotropy. By enforcing the weak spatial
dependence of the external fields w(x) and T (x) on the scale
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of the fluid correlation length, the formal expressions of the
conserved fluxes become

〈 ĵ a(r)〉 = βwb(r)
∫

dx〈 ĵ a(r) ĵ b(x)〉0

− β
∂bT (r)

T

∫
dx

∫ ∞

0
dτ 〈 ĵ a(r)Û (τ ) Ĵ b

H (x)〉0 (21)

〈J ab(r)〉 = Pab(r)− β∂cw
d(r)

×
∫

dx
∫ ∞

0
dτ 〈δ Ĵ ab(r)Û(τ )δ Ĵ cd(x)〉0 (22)

〈 Ĵ a
H (r)〉 = βwb(r)

∫
dx〈 Ĵ a

H (r) ĵ b(x)〉0

− β
∂bT (r)

T

∫
dx

∫ ∞

0
dτ 〈 Ĵ a

H (r)Û (τ ) Ĵ
b
H (x)〉0. (23)

The symbol 〈· · ·〉0 represents a thermal equilibrium average
with distribution function F̂0, Pab(r) = 〈 Ĵ ab(r)〉LTE is the
average of the pressure tensor in local thermal equilibrium
while δ Ĵ ab(r) = Ĵ ab(r) − pδab is the dissipative part of
the pressure tensor. The explicit evaluation of the equilibrium
averages gives the expected known results:∫

dx〈 ĵ a(r) ĵ b(x)〉0 = δabkTρ (24)
∫

dx
∫ ∞

0
dτ 〈δ Ĵ ab(r)Û(τ )δ Ĵ cd(x)〉0

= −kT
[
( 2

3η − ζ )δabδcd − η(δacδbd + δadδbc)
]

(25)∫
dx〈 Ĵ a

H (r) ĵ b(x)〉0 = δabkT (ε + p) (26)
∫

dx
∫ ∞

0
dτ 〈 ĵ a(r)Û(τ ) Ĵ b

H (x)〉0 = ρ�δab (27)
∫

dx
∫ ∞

0
dτ 〈 Ĵ a

H (r)Û(τ ) Ĵ
b
H (x)〉0 = kT 2κδab (28)

where η and ζ are the usual shear and bulk viscosity
coefficients, κ is the thermal conductivity of the solvent and
� is an off-diagonal transport coefficient involving cross-
correlations between heat and mass flow. ε represents the
internal energy per unit volume, so that ε + p is the enthalpy
density. We stress that these results are exact for homogeneous
systems, but this is enough for linear response theory. When
equations (24)–(28) are substituted into expressions (21)–(23)
we obtain the mass, momentum and energy flux correct to
linear order in the external fields. Recalling that, to linear
order, 〈 ĵ a(r)〉 = ρva(r), from equation (21) we find the
relationship between physical velocity v and the auxiliary field
w:

v(r) = w(r)− λ∇T (29)

where λ = �
kT 2 . Setting to zero the divergence of the

mass, momentum and heat flux, we find the usual stationary
conditions for an incompressible fluid:

∂bw
b = 0 (30)

η∇2wa = ∂b Pab (31)

∇2T = 0 (32)

which coincide with the linearized hydrodynamic equations
in the presence of an anisotropic pressure tensor, with no

explicit reference to the existence of a thermal gradient. The
temperature profile clearly enters the pressure tensor Pab(r)
(evaluated in local thermal equilibrium) but also affects the
definition of the auxiliary field w(r) entering the NS equation,
which does not coincide with the physical mass velocity v(r)
as shown by equation (29). This circumstance seems to
support the approach put forward by Brenner [71, 72] but,
by substituting w = v + λ∇T into equations (30)–(32), we
find that the same equations hold for the physical velocity
field v(r), showing that the mixing implied by equation (29) is
ineffective and does not provide the microscopic interpretation
of thermophoretic phenomena. However, the off-diagonal
contribution � plays an important role in defining the
momentum distribution of the solvent in a thermal gradient.
When the distribution (20) is specialized to the case of a
homogeneous, static gas (v = 0, ρ → 0) in a thermal gradient,
we recover a well known result of the kinetic theory of
gases: in the low density limit, the single-particle momentum
distribution function of a fluid particle is indeed affected by a
thermal gradient according to equation (5) and deviates from
the equilibrium value [20], while the pressure tensor remains
uniform throughout the fluid.

The microscopic approach briefly reviewed here shows
that thermophoretic phenomena, both in gases and in liquids,
can be interpreted on the basis of the usual hydrodynamic
equations (30)–(32) in the presence of either an explicit
colloid–solvent interaction or of interfacial effects which
trigger anisotropies in the pressure tensor Pab close to the
colloid [33, 69].

5.3. Interfacial effects and the problem of boundary conditions

We now discuss the explicit solution of equations (30) and (31)
including the consequences of an anisotropic pressure tensor
in the NS equation but neglecting the detailed structure of the
temperature profile close to the colloid.

In the colloid reference frame, we have just to solve the
linearized NS equation

η∇2va = ∂b Pab (33)

for an incompressible fluid (i.e. with divv = 0). As already
shown in equation (22), Pab(r) is evaluated in local thermal
equilibrium. In the absence of a temperature gradient, the
spherical symmetry of the problem forces the pressure tensor
to depend only on two scalar functions [74]:

Pab = pT(r)δ
ab + [

pN(r)− pT(r)
]

nanb. (34)

In LTE, the temperature dependence of the pressure tensor is
converted into spatial dependence by setting T → T (z):

pN → pN(r)+ ∇T
∂pN

∂T
z

pT → pT(r)+ ∇T
∂pT

∂T
z.

(35)

The formal structure of the NS equation (33) with such a
pressure tensor coincides with the expression already studied
in [75], whose solution can be obtained analytically. A
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solenoidal velocity field in cylindrical symmetry may be
parametrized in terms of a single scalar function φ(r) as [73]

v = nz
d

dr

(
φ′

r

)
− k

(
vT + φ′

r
+ φ′′

)
(36)

where a prime represents derivation with respect to the radial
coordinate and (n,k) are the unit vectors in the radial and z
directions respectively. By substituting this parametric form
into equation (33) we find the explicit expression for φ′(r):

φ′(r) = 1

2η
I2(r)− r

3η
I1(r)− 1

6ηr 2
I4(r)− B

r 2
+ A (37)

where, as usual, A and B are integration constants which can
be obtained by imposing the appropriate boundary conditions.
The integrals In(r) are given by

In(r) =
∫ ∞

r
drrnψ(r) (38)

where the function ψ , assumed to be short range, is written in
terms of the normal component of the anisotropic part of the
pressure tensor:

ψ = −1

2
∇T

∂

∂T

[
r p′

N + 3pN
]
. (39)

This solution also requires that the components (pN, pT) of the
unperturbed pressure tensor satisfy the hydrostatic equilibrium
condition. Finally, it is useful to provide the explicit expression
of the normal component of the total stress tensor

nb(Pab + σ ab) = na

[
pN + z

∂pN

∂T
∇T

− ηz

(
φ′′′

r
− 4

φ′′

r 2
+ 4

φ′

r 3

) ]
+ ηkaφ′′′. (40)

Integrating this form on a spherical surface of radius r we
obtain the net momentum flux. By substituting the solution
φ′(r) (37) several simplifications occur and we simply get

Outgoing momentum flux = −8πηAk (41)

showing that, as implied by momentum conservation, the
momentum flux through every spherical surface is constant,
independently from the chosen boundary condition. The total
force acting on the colloid is then simply given by

Fz = 8πηA. (42)

The force balance condition F = 0 then gives A = 0,
which, together with the chosen boundary condition at the
colloid surface, defines the asymptotic velocity vT and the
Soret coefficient ST, via equations (15) and (16).

The inner boundary condition has to be chosen according
to the specific features of the solvent–colloid interface.
Without entering these details, we may investigate three
commonly adopted boundary conditions, respectively named
stick (or no-slip), slip, and Navier.

5.3.1. Stick boundary conditions. In this case we impose that
on the colloid surface the fluid velocity field vanishes: v(r)|a =
0. By use of equations (36) and (37) the two integration
constants A and B are easily obtained. The vanishing of the
total force leads, via equation (42), to A = 0 and then to

vT = 2

3ηa
[a I1(a)− I2(a)] k = −∇T

3η

∂

∂T

×
∫ ∞

a
dr(r − a)

(
1 + a

r

) [
pN − pT

]
(43)

which, via equations (15) and (16), gives the Soret coefficient
for stick boundary conditions:

ST = 2πβa
∂

∂T

∫ ∞

a
dr(r − a)(1 + a

r
)(pN − pT). (44)

This equation relates the Soret coefficient to the temperature
derivatives of the components of the pressure tensor.
Expression (44) closely resembles the definition of the surface
tension γ for a spherical surface:

γ =
∫ ∞

a
dr

a

r
(pN − pT) (45)

and shows that the Soret coefficient is basically proportional to
the temperature derivative of the product between the surface
tension and the width � of the fluid layer characterized by an
anisotropic pressure tensor (the so called transition layer):

�γ =
∫ ∞

a
dr(r − a)(pN − pT). (46)

Such a result conforms to the common structure of the phoretic
coefficients proposed by Ruckenstein [33] and implies a linear
dependence of the Soret coefficient on the particle radius. As
discussed in section 4.2.3, this dependence is experimentally
verified for microemulsion droplets in a non-polar solvent,
although it is still not universally accepted for colloidal latex
particles (see figure 2). Regarding the temperature dependence,
we note that a deeper investigation of the colloid–solvent
interface is required for a quantitative comparison between
theory and experiments. However, as shown in [76], in a dense
fluid, both the surface tension γ and the characteristic length
� depend on temperature only through the number density of
the fluid, leading to a general result: the Soret coefficient is
proportional to the thermal expansion of the solvent, at least
when the colloid–solvent interactions are confined to their
interface.

5.3.2. Slip boundary conditions. Alternatively, we may
impose slip boundary conditions at the colloid surface: the
normal component of the velocity field must clearly vanish,
while the other condition is given by the vanishing of the
tangential component of the surface stress,

0 = ta(Pab + σ ab)nb = ηtakaφ′′′(a) (47)

which implies the vanishing of φ′′′(a). Here the tangential
unit vector is defined as t = ∂n/∂θ . By inserting the explicit
form (37) we again determine the two integration constants A
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and B . The thermophoretic velocity and the Soret coefficient
then follow from equations (15) and (16):

ST = 4

3
πβa

∂

∂T

∫ ∞

a
dr r (pN − pT). (48)

This result is very different from what has been obtained
in the case of stick boundary conditions, showing that the
accurate treatment of surface effects plays a key role in
thermophoretic phenomena. The Soret coefficient is again
basically proportional to the temperature derivative of the
surface tension (45) times a characteristic length that now
coincides with the particle radius a rather than the width
of the transition layer as before. Expression (48) closely
resembles that obtained by Würger [77], who neglected the
anisotropy of the pressure tensor (and the presence of external
forces acting on the fluid due to the colloid) but imposed
a phenomenological inner boundary condition expressing the
balance between the surface stress and the ‘Marangoni force’:

ηtanb(∂av
b + ∂bv

a)+ ta∂aγ (T (z)) = 0. (49)

The only difference between equation (48) and Würger’s
expression of ST is in the dependence on thermal conductivity,
which is absent in our approach due to the chosen form of
the temperature gradient. Note that the scaling of the two
estimates (44) and (48) on the colloid radius a is different,
being now quadratic, rather than linear as in equation (44). The
dependence of ST on the chosen boundary conditions has also
been recently remarked in [78].

5.3.3. Navier boundary conditions. Following Ajdari [31],
we now investigate the so called ‘Navier’ boundary condition.
Besides the vanishing of the normal component of the velocity
at the colloid surface, we now allow the tangential velocity
t · v = vt to remain finite at r = a. Let us define b as the
distance from the surface (inside the colloid) where the linearly
extrapolated vt vanishes:

b
∂vt

∂r

∣∣∣
r=a

= vt |r=a . (50)

The calculations are carried out following the usual steps
and lead to a more general formula for the Soret coefficient.
Remarkably, the result can be written as the linear combination
of the two expressions (44) and (48) in the suggestive form

ST = 4πaβ
a − b

a + 2b

∂

∂T

{
�γ

[
1 + a

a − b

b

�

]}
. (51)

Following the argument put forward by Ajdari, we now
specialize to the case of � � b � a. This corresponds to small
deviations from stick boundary conditions and a small width of
the fluid layer influenced by the presence of the colloid. In this
case, a/(a − b) � 1 and the expression in parenthesis just
reproduces the enhancement factor introduced in [31].

5.4. Failure of the energy route

We now briefly compare the above results, based on detailed
hydrodynamic calculations, with the class of approaches

aiming at the evaluation of the net force on the colloid f in terms
of temperature derivatives of a suitably defined free energy.
The starting point of this group of theories is the possibility
to write the net force f as the gradient of a potential:

f = −∇U . (52)

In a one dimensional geometry this equation does not
impose any restriction on the form of the force. The
point is that the potential U(T (z)) is usually identified
as a thermodynamic quantity: the internal energy of the
colloidal suspension [79–81], the Gibbs free energy [44] or the
‘reversible work’ [82]. In all cases, the energy U(T ) can be
written as a volume term plus a surface contribution:

U(T ) = 	ε 4
3πa3 + γ 4πa2 (53)

where	ε is the difference between a free energy density of the
colloid and that of the fluid while γ is the surface tension of the
colloid–solvent interface. Inserting (53) into equation (52) we
get

f = −∇U = −dU

dT

∣∣∣
p
∇T = −

[
d	ε

dT

4

3
πa3 + dγ

dT
4πa2

]
∇T .

(54)
The first term is considered in [81], where the temperature
derivative of the internal energy is identified as a specific heat.
Other papers ignore the volume term and concentrate on the
surface tension contribution, which has been evaluated in the
specific case of charged colloids.

In order to comment on the validity of these approaches
we have to ask whether the net force acting on the colloid may
be indeed expressed as the derivative of some (free/internal)
energy of the system. A first objection rests upon the
fact that minimum principles hold only at thermodynamic
equilibrium, while thermophoresis refers to stationary states.
Even circumventing this difficulty, a purely thermodynamic
approach may just give information on the total force acting
on the colloid. However, as already noted in section 5.1, the
total force on the colloid vanishes identically in a stationary
state: the Soret coefficient just depends on the net force, which
equals the opposite of the frictional force. Therefore it is not
possible to identify the net force if hydrodynamic effects are
neglected.

5.5. Remarks on electrostatic effects

The physically relevant case of charged colloids poses
additional problems related to the dynamics of the counterions
present in solution. Several papers address this problem, but
the results strongly depend on the assumed structure of the
screening cloud, and in particular on the drag of the solvent
on the charge carriers. Sometimes a further Smoluchowski
equation is written for both co-and counterions [83]. Other
authors [78] assume a local thermal equilibrium distribution
of charges, thereby adopting the equilibrium Boltzmann
distribution. Alternatively, a continuity equation for the
counterion motion is written [69]. Most importantly, when
the theoretical analysis is employed for the interpretation of
experiments, other physical phenomena should be considered,
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like the dependence of the charge on the colloid and of
the surface potential on the salinity of the solution or the
charge renormalization due to short range interactions at the
surface [84].

6. Conclusions and perspectives

From all we have said, thermophoresis turns out to be a
very challenging effect, requiring novel experimental and
theoretical efforts to be fully understood. Beside its interest
for basic statistical mechanics as one of the simplest non-
equilibrium effects, it is also very promising for practical
applications to particle manipulation.

New investigation techniques, and in particular particle-
tracking schemes, can surely be devised. Since there is actually
no need for resolving single particles through high numerical-
aperture optics, but simply detecting the position of their center
of mass, methods such as ultramicroscopy, where the particle
position is detected just by imaging against a dark background
the diffraction-limited spot of the light scattered off-axis, could
work reasonably well. Fourier-space methods, with their
distinctive property of performing an intrinsic average over
the motion of many particles, can also be very promising.
While usual methods such as homodyne intensity correlation
spectroscopy (dynamic light scattering) probe only relative
particle motion, new scattering methods such as space–time
resolved correlation (STRC) or near field scattering (NFS)
are conversely very sensitive to absolute particle drift. In
STRC [85], a ‘speckled’ image of the sample is formed by
using a stopped-down lens system with small entrance pupil.
The intensity of each single speckle fluctuates on a timescale
set by D and by the observation angle, while collective particle
drift yields a uniform translation of the speckle field (so that
the effects of particle Brownian motion and of thermophoretic
drift are easily discriminated). NFS consists in measuring
spatial correlations in the scattering speckle field close to
the sample, which, at variance with the far field speckle
pattern, bears direct information on particle spatial correlation.
Since NFS experiments are more conveniently made at small
scattering angle in a homodyne configuration [86], where the
scattered and transmitted intensities are made to interfere, they
are again sensitive to absolute particle motion. Scattering
concepts and techniques, moreover, being familiar to colloid
scientists, may attract a larger community towards studies of
thermophoretic effects. There is also ample room to extend our
present knowledge of thermophoretic effects by performing
more extensive investigations of surfactant, polyelectrolyte,
and biomacromolecular solutions or by directly visualizing the
thermophoretic motion for big particles.

As concerns the present status of the theory, the analysis
we have developed in section 5 has hopefully established some
reference points, namely the following. (i) The presence of
a thermal gradient alone in a dense liquid does not induce
a thermophoretic force. (ii) A direct microscopic interaction
between colloid and solvent is required to give rise to particle
thermophoresis. (iii) If the effects of such an interaction
may be represented in terms of a non-trivial structure of the
pressure tensor at the interface, the Soret coefficient can be

written in the form (51). (iv) The boundary conditions at the
colloid–solvent interface strongly affect the scaling of ST with
the particle radius, which turns out to be linear only in the
case of stick boundary conditions. (v) On general grounds,
the Soret coefficient for ‘athermal’ colloids is expected to be
proportional to the thermal expansivity of the solvent.

The rapid growth of microfluidics techniques opens up
a number of possible application of thermophoresis, both
for practical and basic reasons. Indeed, while exploiting
dielectrophoretic effects, the most common method used to
manipulate colloidal particles, is feasible and efficient for
insulating suspensions, conductive aqueous systems require
applying high-frequency electric fields to avoid electrode
polarization, and measurements often suffer by noticeable
Joule heating, while thermophoresis is obviously totally
immune from these spurious effects. Moreover, while
dielectrophoresis or electrophoresis rely on simple particle
properties such as dielectric constant or surface charge,
thermophoresis allow taking advantage of multifarious aspects
of particle/solvent interactions. For instance, we have seen
that different proteins, even with a similar charge value,
may display an opposite sign of ST, so that a mixture
could in principle be fractionated by thermophoretic methods.
Furthermore, most experiments seem to show, and theory
to support, that DT is insensitive to particle size. A
size-independent mobility makes thermophoretic transport a
better strategy, compared to motion induced for example
dielectrophoresis or magnetophoresis, where the mobility
scales with the square of the particle radius, to study small
colloids. The application of a steady temperature difference
	T leads to a steady-state fractional concentration difference
at the sides of a microfluidic channel of width d given by
	c/c = ST	T , which is reached in a timescale τ � d2/π2d .
Assuming for instance d = 50 μm, 	T = 10 ◦C, we get
	c/c � 22.5%, τ � 5 s for NaPSS with Mw = 74 kDa, which
is not a small effect. Thermophoretic separation in microfluidic
devices has been recently obtained by Geelhoed et al [87].
Although preliminary, these results are rather promising for
downsizing microfluidics into the nanometric world.
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[58] Rauch J and Köhler W 2004 Macromolecules 38 3571
[59] Rauch J, Hartung M, Privalov A F and Köhler W 2007
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